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Communicated by U.-G. Meißner

Abstract. A systematic calculation of nuclear matter is performed which includes the long-range corre-
lations between nucleons arising from one- and two-pion exchange. Three-body effects from 2π exchange
with excitations of virtual ∆(1232)-isobars are also taken into account in our diagrammatic calculation of
the energy per particle Ē(kf ). In order to eliminate possible high-momentum components from the inter-
actions we introduce at each pion-baryon vertex a form factor of monopole type. The empirical nuclear
matter saturation point, ρ0 ' 0.16 fm−3, Ē0 ' −16MeV, is well reproduced with a monopole mass of
Λ ' 4πfπ ' 1.16GeV. As in the recent approach based on the universal low-momentum NN potential
Vlow-k, the inclusion of three-body effects is crucial in order to achieve saturation of nuclear matter. We
demonstrate that the dependence of the pion exchange contributions to Ē(kf ) on the “resolution” scale Λ
can be compensated over a wide range of Λ by counterterms with two “running” contact couplings. As a
further application we study the in-medium chiral condensate 〈q̄q〉(ρ) beyond the linear density approxi-
mation. For ρ ≤ 1.5ρ0 we find small corrections from the derivative dĒ(kf )/dmπ, which are stable against
variations of the monopole regulator mass Λ.

PACS. 12.38.Bx Perturbative calculations – 21.65.+f Nuclear matter

1 Introduction and summary

In recent years a novel approach to the nuclear matter
problem based on effective field theory has emerged. Its
key element is a separation of long- and short-distance
dynamics and an ordering scheme in powers of small
momenta. At nuclear matter saturation density ρ0 '
0.16 fm−3 the Fermi momentum kf0 and the pion mass
mπ are comparable scales (kf0 ' 2mπ). Therefore pions
must be included as explicit degrees of freedom in the
description of the nuclear many-body dynamics. The con-
tributions to the energy per particle, Ē(kf ), of isospin-
symmetric (spin-saturated) nuclear matter as they origi-
nate from chiral pion-nucleon dynamics have been com-
puted up to three-loop order in refs. [1,2]. Both calcu-
lations are able to reproduce the empirical saturation
point by adjusting one single parameter (either a con-
tact coupling g0 + g1 ' 3.23 [1] or a momentum cut-off
Λ ' 0.65GeV [2]) related to unresolved short-distance dy-
namics. The mechanism for saturation in these approaches
is mainly a repulsive contribution to the energy per par-
ticle generated by Pauli blocking in second order (iter-
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ated) one-pion exchange. As outlined in ref. [2] this mech-
anism becomes particularly transparent by taking the chi-
ral limitmπ = 0. In that case the interaction contributions
to the energy per particle are completely summarized by
an attractive k3

f term and a repulsive k4
f term where the

parameter-free prediction for the coefficient of the latter
is very close to the one extracted from a realistic nuclear
matter equation of state.

This chiral approach to nuclear matter has been ex-
tended and improved in ref. [3] by including systemati-
cally the effects from 2π exchange with excitation of vir-
tual ∆(1232)-isobars. The physical motivation for such an
extension is threefold. First, the spin-isospin-3/2 ∆(1232)-
resonance is the most prominent feature of low-energy
πN scattering. Secondly, it is well known that the 2π
exchange between nucleons with excitation of virtual ∆-
isobars generates the medium- and long-range components
of the isoscalar central NN attraction [4]. In phenomeno-
logical one-boson exchange models this πN∆ dynamics is
often simulated by a scalar “σ”-meson exchange. Thirdly,
the delta-nucleon mass splitting M∆ − MN = 293MeV
is of the same size as the Fermi momentum kf0 ' 2mπ

at nuclear matter saturation density. Therefore pions and
∆-isobars should both be treated as explicit degrees of
freedom.



54 The European Physical Journal A

It has been found in ref. [3] that the inclusion of the
chiral πN∆ dynamics significantly improves, e.g., the mo-
mentum dependence of the (real) single-particle poten-
tial U(p, kf ) and the isospin properties (as revealed in
the density-dependent asymmetry energy A(kf ) and the
neutron matter equation of state Ēn(kn)). However, there
remain some open questions in these perturbative calcu-
lations of nuclear matter. The effective short-range terms
are adjusted directly to nuclear matter bulk properties
and thus seem unrelated to those relevant for free NN
scattering. Also, no deeper justification for a perturbative
treatment of nuclear matter (besides of being very suc-
cessful) could be given.

Important progress in this direction has come re-
cently from the work of Bogner et al. [5] based on the
universal low-momentum NN potential Vlow-k. This po-
tential operates by construction only between the low-
momentum nucleon states, |~p | ≤ 0.4GeV, where it is
truly determined by elastic NN scattering data. It has
been demonstrated in ref. [5] that, due to the absence of
a model-dependent short-range repulsive core in the po-
tential Vlow-k, its second- and higher-order iterations in
nuclear matter (i.e. the successive terms in the Brueckner
ladder-series) turn out to be small. The primary reason for
this (unconventional) feature is the Pauli-exclusion prin-
ciple: with increasing Fermi momentum kf Pauli blocking
reduces progressively the available low-momentum phase
space wherein Vlow-k acts. Under such conditions a per-
turbative treatment of the two-body interaction in nuclear
matter turns out to be justified. It has also been demon-
strated in ref. [5] that a saturation of nuclear matter can-
not be achieved from the (low-momentum) two-body in-
teraction alone (see also ref. [6] for earlier Hartree-Fock
calculations with Vlow-k exhibiting the same feature). Re-
pulsive three-nucleon interactions (in particular, the long-
range ones induced by 2π exchange) are crucial in order to
stabilize the nuclear many-body system against collapse.
As emphasized in ref. [5] in an effective low-energy theory
(with a “spatial resolution” of λ = (0.4GeV)−1 ' 0.5 fm
as it is inherent to the Vlow-k potential) many-body forces
are inevitable. Taking into account furthermore the domi-
nant second-order contributions from Vlow-k and the three-
nucleon force (adjusted partly to triton and 4He binding
energies) a saturation minimum of Ē0 ' −12MeV at the
correct equilibrium density kf0 ' 1.35 fm−1 has been ob-
tained. These values correspond to the presently achieved
optimum. The theoretical error bar induced by the cutoff
variation is discussed in ref. [5] (see fig. 6 therein).

The purpose of the present paper is to reanalyze the
chiral approach to nuclear matter from this new perspec-
tive and to establish (at least some qualitative) connec-
tions to the Vlow-k approach (which actually starts from
phase-shift equivalent NN potentials). As already men-
tioned, the second-order tensor force from iterated one-
pion exchange plays an essential role in order to obtain
binding and saturation of nuclear matter in the (pertur-
bative) chiral approaches studied so far [1–3]. On the other
hand, its strong short-distance components are one of the
sources which render the Brueckner ladder series in nu-

clear matter non-perturbative (i.e., not convergent) [5].
It is therefore advisable to eliminate the high-momentum
components from the pion-induced NN interactions. For
that purpose, we follow the phenomenology of the one-
boson exchange potentials and introduce at each pion-
nucleon interaction vertex a “form factor” of monopole
type:

F (q2) =
Λ2 −m2

π

Λ2 − q2
, (1)

with Λ the monopole mass1. Here, q2 ≤ 0 denotes the
squared four-momentum transfer carried by the virtual
pion. Typical values of the monopole mass Λ employed in
one-boson exchange potentials lie in the range 1.0GeV <
Λ < 1.7GeV [7,8]. With the form factor F (q2) included
as a regulator on high-momentum components the 1π
and 2π exchange contributions to the energy per parti-
cle Ē(kf ) depend on the monopole mass Λ. As a first
orientation we find that the “natural choice” Λ ' 4πfπ '
1.16GeV (the chiral symmetry breaking scale) reproduces
correctly the empirical nuclear matter saturation point:
ρ0 = 2k3

f0/3π
2 ' 0.16 fm−3, Ē(kf0) ' −16MeV. As in the

Vlow-k approach of ref. [5] the inclusion of the pion-induced
three-body terms (with and without virtual ∆-isobar exci-
tation) is essential in order to achieve saturation of nuclear
matter.

However, a physical low-energy quantity such as the
nuclear matter equation of state Ē(kf ) should not de-
pend on a parameter Λ which merely scans the “spa-
tial resolution” of the pion-baryon interactions involved.
We demonstrate that this (unphysical) Λ-dependence of
the pion-exchange contributions is, over a large range of
monopole masses and densities, almost perfectly counter-
balanced by the k3

f and k5
f terms related to two “running”

short-distance contact couplings B3,5(Λ).
Having reached a description of nuclear matter in

terms of explicit pion-exchange dynamics, which is sta-
ble against variations of the short-distance scale Λ, we can
study the in-medium chiral condensate 〈q̄q〉(ρ) beyond the
linear density approximation. These corrections are ob-
tained by differentiating the calculated energy density of
nuclear matter ρĒ(kf ) with respect to the pion mass (or
equivalently, the light quark mass mq). Below the satu-
ration density ρ ≤ 0.16 fm−3 we find very small correc-
tions. At higher densities a tendency counteracting chiral
restoration sets in. Moreover, there is little dependence of
the derivative dĒ(kf )/dmπ on the monopole mass Λ (as-
suming the short-distance contact couplings B3,5(Λ) to be
independent of the quark mass).

Our paper is organized as follows: In sect. 2 we present
first the analytical expressions for the one- and two-pion
exchange contributions to the energy per particle Ē(kf )
including the monopole form factors. Then, we discuss
in sect. 3 the results for the nuclear matter equation of
state together with the compensating short-distance con-
tact couplings B3,5(Λ). Section 4 is devoted to the in-

1 The choice of a monopole form factor is primarily for prac-
tical convenience.
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medium chiral quark condensate 〈q̄q〉(ρ). Section 5 ends
finally with some concluding remarks and an outlook.

2 Diagrammatic calculation of the energy per

particle

The first contribution to the energy per particle Ē(kf ) is
the kinetic energy of the relativistic Fermi gas of nucleons
(expanded in powers of 1/MN ):

Ē(kf )
(kin) =

3k2
f

10MN
−

3k4
f

56M3
N

+
k6
f

48M5
N

. (2)

Here, kf denotes the Fermi momentum, related to the
nucleon density in the usual way, ρ = 2k3

f/3π
2, and

MN = 939MeV stands for the (average) nucleon mass.
At the densities of interest, ρ ≤ 0.5 fm−3, the last term
in eq. (2) is already negligibly small (< 0.1MeV). Next,
we enumerate the interaction contributions from one- and
two-pion exchange. For each diagram we present only the
final result omitting all technical details related to combi-
natoric and spin-isospin factors and solving the loop and
Fermi sphere integrals in the presence of the monopole
form factors. Some useful “master integrals” can be found
in appendix A of ref. [9].

2.1 One-pion exchange Fock term

The contribution of the left 1π exchange Fock diagram in
fig. 1 (including the relativistic 1/M 2

N -correction) reads:

Ē(kf )
(1π)=

3g2
Am

3
π

(4πfπ)2

{

r4 − 3r2 + 2

8r4u
+ arctan(2u)

+
1− 3r2

2r3
arctan(2ru)− 1 + 12u2

32u3
ln(1 + 4u2)

+
3r2 − 2 + 12r2u2(2r2 − 1)

32r6u3
ln(1 + 4r2u2)

+
m2
π

40M2
N

[

r6 − 4r2 + 3

2r6u
+

3u

r4
(3r4 − 7r2 + 4)

−(5 + 12u2) arctan(2u)

+
1

2r5
(25r2−15−12r2u2+36r4u2) arctan(2ru)

− 1

8u3
ln(1 + 4u2) +

4r2 − 3

8r8u3
ln(1 + 4r2u2)

]

}

. (3)

For notational simplicity we have introduced the dimen-
sionless variable u = kf/mπ and the ratio r = mπ/Λ. The
other occurring parameters are: gA = 1.3 (the nucleon

Fig. 1. Two-loop one-pion exchange Fock diagram and three-
loop iterated one-pion exchange Hartree and Fock diagrams.
The combinatoric factors are 1/2, 1/4 and 1/4, in the order
shown. Their isospin factors for symmetric nuclear matter are
6, 12 and −6, respectively.

axial-vector coupling constant), mπ = 135MeV (the neu-
tral pion mass), and fπ = 92.4MeV (the weak pion-decay
constant). In the limit r → 0 one recovers the result eq. (6)
in ref. [2] without the monopole form factor.

2.2 Iterated one-pion exchange

The Hartree diagram of the iterated 1π exchange (middle
diagram in fig. 1) with two medium insertions2 leads to
the following analytical expression:

Ē(kf )
(H2) =

3g4
AMNm

4
π

5(8π)3f4
π

{

20(3 + r2) + 32(1 + r2)u2

1− r2
[arctan(2u)

− arctan(2ru)] +
1

u

(

1

2
+

5

16r5
− 11

8r3
+

41

16r
+

4

1 + r

)

+u

(

29− 15

8r3
+

41

4r
− 75r

8
− 88

1 + r

)

+
r2 − 9− 20(7 + r2)u2

8(1− r2)u3
ln(1 + 4u2)

+
27r2−5−63r4+105r6+20r2u2(1−7r2+35r4+35r6)

64r7(1−r2)u3

× ln(1 + 4r2u2)

}

. (4)

The corresponding exchange term comes from the Fock
diagram of the iterated 1π exchange (right diagram in
fig. 1) with two medium insertions. While the loop integral
including the two squared monopole form factors can be
solved there remains a single non-elementary integral from

2 Medium insertion is the technical notation for the differ-
ence between the nucleon propagator in the medium and in
the vacuum (see sect. 2 in ref. [2]). To each medium insertion
belongs an integration over a Fermi sphere of radius kf .
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the integration over the Fermi spheres. We get

Ē(kf )
(F2) =

3g4
AMNm

4
π

(4πu)3f4
π

∫ u

0

dxx(u− x)2(2u+ x)

×
{

1+8x2+8x4

2+4x2
arctanx− (1−r2)2(1+4x2) arctan(2x)

(2+4x2)(1+r2+4r2x2)2

+

[

1 + 2x2 − 1 + r4 + 4r4x2

(1 + r2 + 4r2x2)2

]

×
[

arctan
4r2x

1− r2 + 4r2x2
− arctan

2rx

1 + r
− arctan

2rx

1− r

]

+

[

1 + 2x2− 1 + r4 + 4r4x2(1 + r2 + 2r4x2)

4r2(1 + 2r2x2)3

]

arctan(rx)

+

[

1 + r4 + 4r4x2(1 + r2 + 2r4x2)

4r2(1 + 2r2x2)3

− 1 + r4 + 4r4x2

(1 + r2 + 4r2x2)2

]

arctan(2rx)

+x(1− r2)

[

1 + r−1

1 + r2 + 4r2x2
+

(1− r)2 + 4r2x2

(1 + r2 + 4r2x2)2 − 4r2

+
4rx2(r2 − 2) + 5r − 9r−1

16(1 + r2x2)2
− r−1 + rx2(1 + r2)

(1 + 2r2x2)2

]

}

. (5)

In our way of organizing the many-body calculation, the
Pauli-blocking effects are represented by diagrams with
three medium insertions [2,3]. The contribution of the
Hartree diagram with three medium insertions (including
the fourth power of a monopole form factor) reads

Ē(kf )
(H3) =

9g4
AMNm

4
π

(4πfπ)4u3

∫ u

0

dxx2

∫ 1

−1

dy

×
[

2uxy + (u2 − x2y2) ln
u+ xy

u− xy

]

×
{

2 + 2r2

1− r2

[

ln(1 + r2s2)− ln(1 + s2)
]

+
2s2 + s4

1 + s2
+

r2s2

3(1 + r2s2)3
[

6− 6s2 + 15r2s2

−8r2s4 + 7r4s4 + r6s4 − 3r4s6
]

}

, (6)

with the abbreviation s = xy +
√

u2 − x2 + x2y2. On
the other hand, one gets from the right Fock diagram in
fig. 1 with three medium insertions (including two squared
monopole form factors)

Ē(kf )
(F3) =

9g4
AMNm

4
π

(4πfπ)4u3

∫ u

0

dx

{

G2

8
− x2

4

∫ 1

−1

dy

×
∫ 1

−1

dz
yz θ(y2 + z2 − 1)

|yz|
√

y2 + z2 − 1

[

(1− r2)s2

1 + r2s2
− ln(1 + s2)

+ln(1+r2s2)

][

(1−r2)t2

1+r2t2
−ln(1+t2)+ln(1+r2t2)

]

}

, (7)

with another abbreviation t = xz +
√
u2 − x2 + x2z2 and

the auxiliary function

G =
u

r2
(1− r2)− 1

4x
[1 + (u+ x)2][1 + (u− x)2]

× ln
1 + (u+ x)2

1 + (u− x)2
+

1

4x

[

2r−2 − r−4 + (u2 − x2)2

+2u2 + 2x2
]

ln
1 + r2(u+ x)2

1 + r2(u− x)2
. (8)

Note that the contributions in eqs. (4)–(7) carry the large-
scale enhancement factor MN . It stems from the energy
denominator of these iterated diagrams which is propor-
tional to the difference of small nucleon kinetic energies.

2.3 Irreducible two-pion exchange: spectral
representation

Next, we come to the irreducible 2π exchange contribu-
tions (with no, single, and double ∆(1232)-isobar exci-
tation). Their direct evaluation requires the one-loop NN
scattering T -matrix with a monopole form factor attached
to each pion-baryon vertex. The essential long-distance in-
formation about these 2π exchange one-loop diagrams is
already contained in the spectral functions (or imaginary
parts). The effect of the monopole form factors3 on the
spectral functions can be easily inferred from the follow-
ing partial fraction decomposition:

1

m2
π − q2

(

Λ2 −m2
π

Λ2 − q2

)2

=
1

m2
π − q2

− 1

Λ2 − q2
− Λ2 −m2

π

(Λ2 − q2)2
.

(9)
It instructs us that a pion exchange with monopole form
factors attached to the vertices is identical to a point-
like pion exchange minus additional exchanges involving a
“heavy particle” of mass Λ. By unitarity this implies that
the spectral function of a one-loop 2π exchange diagram
with monopole form factors has thresholds at µ = 2mπ,
µ = Λ + mπ and µ = 2Λ. At the higher thresholds the
effective chiral Lagrangian is, however, no more applica-
ble. In this case a meaningful and physically reasonable
way to include effects from the monopole form factor is to
cut off the spectral integral at µ = Λ + mπ. Putting all
pieces together [3] this procedure leads to the following 2π
exchange two-body Fock term:

Ē(kf )
(2π) =

1

8π3

∫ Λ+mπ

2mπ

dµ Im(VC + 3WC + 2µ2VT

+6µ2WT )

{

3µkf−
4k3

f

3µ
+
8k5

f

5µ3
− µ3

2kf
− 4µ2 arctan

2kf
µ

+
µ3

8k3
f

(12k2
f + µ2) ln

(

1 +
4k2

f

µ2

)

}

, (10)

where ImVC , ImWC , ImVT and ImWT are the spectral
functions of the isoscalar and isovector central and tensor

3 We choose the same monopole form factor for each pion-
baryon vertex.
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NN amplitudes, respectively. Explicit expressions of these
imaginary parts for the contributions of the triangle dia-
gram with single ∆ excitation and the box diagrams with
single and double ∆ excitation can be easily constructed
from the analytical formulas given in sect. 3 of ref. [4].
Note that the µ- and kf -dependent weighting function in
eq. (10) involves two subtractions. This way it is guaran-
teed that the spectral integral at low and moderate densi-
ties is dominated by low invariant ππ masses, 2mπ < µ <
1GeV. We note also that the method of spectral function
regularization has been introduced and studied in detail
for elastic NN scattering by Epelbaum et al. [10].

The contributions to the energy per particle from the
irreducible 2π exchange (with only nucleon intermediate
states) can also be cast into the form eq. (10). The corre-
sponding non-vanishing spectral functions read

ImWC =

√

µ2 − 4m2
π

3πµ(4fπ)4

[

4m2
π(1 + 4g2

A − 5g4
A)

+µ2(23g4
A − 10g2

A − 1) +
48g4

Am
4
π

µ2 − 4m2
π

]

, (11)

ImVT = −6g4
A

√

µ2 − 4m2
π

πµ(4fπ)4
. (12)

2.4 Three-body terms with intermediate
∆(1232)-isobars

Finally, we come to the additional three-body terms which
arise from Pauli-blocking of intermediate nucleon states.
The corresponding closed Hartree and Fock 2π exchange
diagrams with single virtual∆-isobar excitation are shown
in fig. 2. Their isospin factors are 8, 0 and 8, in the order
shown. For the (left) three-loop Hartree diagram the inte-
gral over the product of three Fermi spheres of radius kf
can be solved in the presence of the monopole form factors
and its contribution to the energy per particle reads

Ē(kf )
(H3,∆)=

g4
Am

6
π

(M∆ −MN )(2πfπ)4

{

1 + 9u2 + 3r2u2

4(1− r2)

×
[

ln(1+4r2u2)−ln(1+4u2)
]

+
4r2u2+u4(2r2−1+15r4)

4r2(1+4r2u2)

+
(5 + 3r2)u3

1− r2
arctan(2u)

+
(1− 15r2 − 45r4 − 5r6)u3

8r3(1− r2)
arctan(2ru)

}

, (13)

with u = kf/mπ and r = mπ/Λ. The non-relativistic
∆-propagator shows up in this expression merely via
the (reciprocal) mass splitting M∆ − MN = 293MeV.
Furthermore, we have inserted in eq. (13) already the em-

pirically well-satisfied relation gπN∆ = 3gπN/
√
2 together

with the Goldberger-Treiman relation gπN = gAMN/fπ =
13.2. Finally, the contribution of the right three-body Fock
diagram in fig. 2, with two squared monopole form factors
included, is given by

Ē(kf )
(F3,∆)=− 3g4

Am
6
πu
−3

4(M∆−MN )(4πfπ)4

∫ u

0

dx
(

2G2
S+G

2
T

)

,

(14)

Fig. 2. Hartree and Fock three-body diagrams related to 2π
exchange with single virtual ∆-isobar excitation. For symmet-
ric nuclear matter the isospin factors are 8, 0 and 8, in the
order shown. The combinatoric factor is 1 for each diagram.

where we have introduced the two auxiliary functions

GS = 4x[arctan(u+ x) + arctan(u− x)]

+(x2 − u2 − 1) ln
1 + (u+ x)2

1 + (u− x)2

+
2x

r3
(1− 3r2){arctan[r(u+ x)] + arctan[r(u− x)]}

+(u2 − x2 + 2r−2 − r−4) ln
1 + r2(u+ x)2

1 + r2(u− x)2
, (15)

GT =
1 + u2 − x2

8x2
[1 + (u+ x)2][1 + (u− x)2]

× ln
1 + (u+ x)2

1 + (u− x)2
+

(1− r2)u

2r4x
[r2(1− u2 + x2)− 2]

+
1

8

[

x4 + (1− 3u2)x2 + 2u2 + 3u4 + r−4

−2r−2 − u4

x2
(3 + u2) +

3u2

r4x2
(1− 2r2)

+
2− 3r2

r6x2

]

ln
1 + r2(u+ x)2

1 + r2(u− x)2
. (16)

Evidently, the three-body Fock term in eq. (14) is at-
tractive and reduces, by about 1/3, the stronger repulsive
Hartree term in eq. (13).

3 Results for the nuclear matter equation of

state

We are now in the position to present numerical results
for the nuclear matter equation of state. The interac-
tion contributions to the energy per particle Ē(kf ) writ-
ten down in sect. 2 depend on a free parameter, the
monopole mass Λ. A first possible option is to adjust
it to (one coordinate of) the empirical saturation point.
Imposing a minimum of the saturation curve Ē(kf ) at
kf0 = 262MeV (corresponding to an equilibrium den-
sity of ρ0 = 0.158 fm−3) fixes the monopole mass to
Λ0 = 1.145GeV. This value is surprisingly close to the
chiral symmetry breaking scale Λχ = 4πfπ ' 1.16GeV.
It is also compatible with the typical monopole masses
employed in one-boson exchange potentials [7]. With that
fixed Λ0-value the energy per particle at the saturation
minimum comes out as Ē0 = −16.7MeV, in good agree-
ment with the empirical value Ē0 = (−16± 1)MeV. This
is quite a non-trivial result.
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Fig. 3. Energy per particle Ē(kf ) of isospin-symmetric nuclear
matter versus the nucleon density ρ = 2k3

f/3π
2. In the dashed

lines all three-body terms have been omitted.

The decomposition of Ē0 into the contribution from
the kinetic energy, 1π and 2π exchange, as well as two-
and three-body terms is also interesting: Ē0 = (21.64 +
13.63 − 72.86 − 6.41 + 19.06 − 1.46 + 4.63 + 7.72 −
2.67)MeV, where the nine entries correspond to the terms
in eqs. (2)–(7), (10), (13), (14), in that order. The total
potential energy per particle Ē(kf0)

(pot) = −38.3MeV
arises from a balance of attractive and repulsive terms,
where the largest of them amounts to about 1.9 times the
total result. This represents some improvement in compar-
ison to the situation in refs. [2,3] without the monopole
form factors but it leaves the question about the “con-
vergence” of the pion loop expansion for nuclear matter
still open. The full line in fig. 3 shows the resulting nu-
clear matter equation of state as a function of the nucleon
density ρ = 2k3

f/3π
2 up to about 2.5ρ0 ' 0.4 fm−3. The

curvature at its minimum translates into a nuclear mat-
ter compressibility of K = k2

f0Ē
′′(kf0) = 292MeV. It is

about 10% larger than the recent extrapolation from gi-
ant monopole resonances of heavy nuclei, which gave the
value K = (260± 10)MeV [11].

The inclusion of the 2π exchange three-body terms
eqs. (6), (7), (13), (14) is crucial in order to achieve real-
istic saturation of nuclear matter in our calculation. This
feature is in accordance with the findings in the work of
ref. [5] based on the universal low-momentum NN poten-
tial Vlow-k. It is also compatible with the results of sophis-
ticated many-body calculations by the Urbana group [12].
The dashed line in fig. 3 shows the effect of turning off
the 2π exchange three-body terms eqs. (6), (7), (13), (14)
in our calculation. After such a truncation there is almost
no trace of nuclear matter saturation left over. In order
to keep still a very shallow minimum at kf0 = 262MeV
the monopole mass has been reduced to Λ = 0.77GeV.
Leaving Λ0 = 1.15GeV unchanged the curve for Ē(kf )
without three-body terms would just decrease monotoni-
cally for all densities 0 < ρ < 0.4 fm−3, reaching the huge
negative value −78.2MeV at its lower end. This behav-
ior is indicated (for low densities ρ ≤ 0.1 fm−3) by the
dash-dotted line in fig. 3.
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Fig. 4. The “running” contact couplings B3(Λ) and B5(Λ) as
a function of the resolution scale Λ.

The pion-nucleon monopole form factor F (q2) intro-
duced in our calculation is only a regulator eliminating
high-momentum components. It is not a physical (ob-
servable) quantity. Interpreted differently, the monopole
mass Λ is a control parameter which monitors the “spa-
tial resolution” at the pion-baryon interaction vertices. A
low-energy quantity, such as the nuclear matter equation
of state, should not depend on it. We take the point of
view, characteristic of an effective field theory, that the ex-
plicit pion-exchange terms are accompanied by additional
“unresolved” short-distance contributions. The most gen-
eralNN contact interaction (momentum-independent and
quadratic in momenta) gives rise to the following countert-
erm contribution to the energy per particle:

Ē(kf )
(ct) = B3(Λ)

k3
f

M2
N

+B5(Λ)
k5
f

M4
N

, (17)

with B3(Λ) and B5(Λ) two dimensionless coupling
strengths. In the sense of a “renormalization group equa-
tion” we allow these contact couplings to run with the
resolution scale Λ such that the physical observable, the
total energy per particle Ē(kf ), is (as closely as possible)
independent of Λ.

Figure 4 shows how the two contact couplings B3(Λ)
and B5(Λ) must vary with the monopole mass Λ if the
nuclear matter saturation point is required to stay fixed.
The approximate linear rise of B3(Λ) over the whole
range 0.4GeV < Λ < 2.4GeV finds its explanation in
the fact that for the iterated 1π exchange contributions
eqs. (3), (5), the monopole form factor serves also as a
regulator on a linearly divergent loop integral (scaling as
1/r ∼ Λ) which contributes to the energy per particle lin-
ear in density (ρ ∼ k3

f ). In the window 0.9GeV < Λ <
1.5GeV of monopole masses the contact couplings can be
considered as being of “natural” size: |B3,5(Λ)| < 6.

In fig. 5 we show the resulting nuclear matter equation
of state for three different monopole masses Λ = 0.5GeV,
1.0GeV and 1.5GeV. In the density region 0 < ρ <
0.4 fm−3 there is almost no dependence on the resolu-
tion scale Λ left over. As expected, the small spread-
ing of the three curves increases with increasing Fermi
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Fig. 5. Energy per particle Ē(kf ) of isospin-symmetric nuclear
matter versus the nucleon density ρ = 2k3

f/3π
2. The curves

correspond to three different monopole masses Λ = 0.5GeV,
1.0GeV and 1.5GeV with the contributions of the compensat-
ing contact couplings B3,5(Λ) included.

momentum kf , where higher-momentum components of
the interactions get probed more sensitively. It is also
astonishing to observe that the rather complicated den-
sity dependence of the r-dependent terms (r = mπ/Λ)
written down in sect. 2 can be almost perfectly coun-
terbalanced by two leading powers of the Fermi momen-
tum, k3

f and k5
f , reflecting contact interactions without

and with two derivatives. We have investigated the dif-
ferences in the energy per particle with respect to the
case Λ0 = 1.15GeV where the running contact couplings
are zero: B3(Λ0) = B5(Λ0) = 0. For a wide range of
monopole masses, 0.4GeV < Λ < 2.5GeV, these devi-
ations oscillate merely between +1.5MeV and −1.0MeV
in the whole density region 0 < ρ < 0.5 fm−3. There-
fore, one can speak of a pretty stable nuclear matter sat-
uration curve in our calculation which combines pion ex-
change dynamics including a regularizing monopole form
factor with (two) scale-dependent short-distance contact
couplings. As a supplementary information we give also for
Λ = 0.75GeV the contributions to the total potential en-
ergy: Ē(kf0)

(pot) = (11.3−33.6−1.4+13.0−1.0+3.6+5.2−
1.8 − 33.7)MeV, where the last entry corresponds to the
counterterm in eq. (17). Now each individual contribution
is (in magnitude) smaller than 0.9 times the total result.

4 Chiral condensate at finite density

The chiral condensate 〈0|q̄q|0〉 is an order parameter of
spontaneous chiral symmetry breaking. With increasing
temperature the chiral condensate decreases (or “melts
away”). For low temperatures this effect can be systemat-
ically calculated in chiral perturbation theory. At three-
loop order [13] the estimate Tc ' 190MeV of the criti-
cal temperature, where chiral symmetry will be eventu-
ally restored, has been found. This (extrapolated) value
of Tc is remarkably consistent with the recent result Tc =

(192 ± 8)MeV obtained in numerical simulations of full
QCD on the lattice [14]. The chiral condensate drops also
with increasing baryon density. The leading linear term in
the nucleon density ρ is readily derived (via the Feynman-
Hellmann theorem) by differentiating the energy density
of a nucleonic Fermi gas, ρMN + O(ρ5/3), with respect
to the light quark mass mq. This introduces the nucleon
sigma-term σN = 〈N |mq q̄q|N〉 = mq ∂MN/∂mq as the
driving term for the density evolution of the chiral conden-
sate. Corrections beyond the linear density approximation
arise from the NN interactions which transform the nu-
cleonic Fermi gas into a nuclear Fermi liquid. Because of
the Goldstone boson nature of the pions, m2

π ∼ mq, the
explicit pion exchange dynamics in nuclear matter plays a
particularly important role for the in-medium chiral con-
densate 〈q̄q〉(ρ). Converting quark mass derivatives into
pion mass derivatives and using the Gell-Mann-Oakes-
Renner relation m2

πf
2
π = −mq 〈0|q̄q|0〉 one finds for the

ratio of the in-medium to vacuum chiral condensate

〈q̄q〉(ρ)
〈0|q̄q|0〉 = 1− ρ

2mπf2
π

[

2σN
mπ

+
dĒ(kf )

dmπ

]

. (18)

The nucleon sigma-term

σN = mq
∂MN

∂mq
=

mπ

2

∂MN

∂mπ
(19)

measures that portion of the nucleon mass MN which
arises from the explicit chiral symmetry breaking in
QCD (i.e., the non-vanishing up/down quark mass
mq 6= 0). The empirical value of σN as extracted from
dispersion relation analyses of πN scattering data is
σN = (45± 8)MeV [15].

From our nuclear matter calculation with explicit one-
and two-pion exchange dynamics we can now easily com-
pute the derivative dĒ(kf )/dmπ of the energy per par-
ticle with respect to the pion mass. In addition to the
explicit mπ-dependence we consider also the implicit one
through the nucleon mass: ∂MN/∂mπ = 2σN/mπ ' 0.67.
The smaller and less well-known quark mass derivatives
of the axial-vector coupling constant gA and the pion
decay constant fπ are neglected at present. For exam-
ple, the one-loop chiral perturbation theory gives for the
pion decay constant the small derivative: ∂fπ/∂mπ =
(l̄4 − 1)mπ/(8π

2fπ) ' 0.063 [16]. Furthermore, from the
combination of lattice QCD results for gA and their chi-
ral extrapolation [17] one estimates mπ ∂gA/∂mπ ≤ 0.05
around the physical point. Corrections to dĒ(kf )/dmπ

from the mπ-dependence of the πN coupling constant
∼ gA/fπ, are therefore expected to be small, less than 5%.

Figure 6 shows the dropping chiral condensate 〈q̄q〉(ρ)
as a function of the nucleon density up to ρ = 0.4 fm−3.
The full line corresponds to the linear density approx-
imation using the central value σN = 45MeV. The
other curves include the effects of nuclear correlations
through the derivative dĒ(kf )/dmπ for various values of
the monopole mass Λ. We have assumed that the short-
distance contact couplings, B3(Λ)/M

2
N and B5(Λ)/M

4
N ,

which keep the saturation curve Ē(kf ) stable (see sect. 3)



60 The European Physical Journal A

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

ρ [fm
-3

]

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

<
qq

>
(ρ

)/
<

0|
qq

|0
>

linear ρ approx.
Λ=0.4 GeV
Λ=0.9 GeV
Λ=1.5 GeV

Fig. 6. Density dependence of the chiral quark condensate
〈q̄q〉(ρ).

are quark mass independent. This is a natural assump-
tion, but difficult to substantiate further. If we use the
naive dimensional analysis of refs. [18,19] to estimate the

quark mass dependence, B3(Λ) = B
(0)
3 (Λ) + α3(mπ/Λχ)

2

together with the generous bound |α3| < 5, we find at
ρ0 = 0.16 fm−3 at most a 1% effect on the condensate
ratio eq. (18).

One observes in fig. 6 that up to equilibrium density
ρ0 the corrections beyond the linear density approxima-
tion are in fact very small. This finding can be taken as
an a posteriori justification of the assumption made in
ref. [20] about the in-medium behavior of the scalar mean

field Σ
(0)
S . At higher densities a trend counteracting chiral

restoration sets in. Similar features have been observed
in the earlier chiral approach of Lutz et al. [1] as well as
in ref. [21] where the relativistic scalar-vector mean-field
phenomenology has been combined with estimates of the
quark mass derivatives. It is comforting to see that the
explicit one- and two-pion exchange dynamics does not
lead to the opposite trend, namely acceleration of chiral
restoration, which would undermine the foundation of the
present approach to nuclear matter, based on the sponta-
neous breaking of chiral symmetry (in the vacuum).

Finally, one should note that the nucleon sigma-term
σN has presently a sizable uncertainty of ±18%. There-
fore, the error band associated with the linear density ap-
proximation 1−ρ σN/(m

2
πf

2
π) masks practically all effects

from nuclear correlations at least up to nuclear matter
saturation density, ρ0 = 0.16 fm−3.

5 Concluding remarks and outlook

In this work we have performed a nuclear matter calcu-
lation which treats the long-range correlations from one-
and two-pion exchange explicitly. In accordance with the
recent approach of ref. [5] based on the Vlow-k potential we
find that repulsive three-body terms are essential in order
to achieve realistic binding and saturation of nuclear mat-
ter. As a novel feature we have introduced a pion-nucleon

monopole form factor as a regulator to eliminate high-
momentum components from the interactions. The depen-
dence on the “resolution” parameter, the monopole mass
Λ, can be perfectly counterbalanced by two running short-
distance contact couplings B3,5(Λ). The resulting nuclear
matter equation of state Ē(kf ) is stable against variations
of Λ. We have taken the pion mass derivative dĒ(kf )/dmπ

and obtained small corrections to the in-medium chiral
condensate 〈q̄q〉(ρ) beyond the linear density approxima-
tion.

A more detailed comparison of the present nuclear
matter calculation with the one based on the Vlow-k poten-
tial [5] offers prospects for a better understanding of the
relevant short-range NN dynamics, which so far enters in
the form of two adjusted contact couplings B3,5(Λ). Work
along these lines is in progress [22].

We thank Achim Schwenk for many useful discussions.
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